

Mark Scheme (Results)

January 2020

Pearson International Advanced Subsidiary Level In Chemistry (WCH11) Paper 01 Structure, Bonding and Introduction to Organic Chemistry

Section A

Question Number	Answer	Mark
1	The only correct answer is C (17 protons, 20 neutrons, 18 electrons)	
	A is incorrect because this shows the subatomic particles in ³⁷ Cl ⁺ ion	
	B is incorrect because this is for a chlorine-37 atom	
	D is incorrect because the proton and neutron numbers are reversed	(1)

Question	Answer	Mark
Number		
2	The only correct answer is A (58.760)	
	B is incorrect because this is the correct answer to 3 SF	
	C is incorrect because a relative mass of 59 has been used for the first isotope and the answer is to 3 SF	
	D is incorrect because a relative mass of 59 has been used for the first isotope	(1)

Question Number	Answer	Mark
3	The only correct answer is D (14)	
	A is incorrect because 3 is the number of quantum shells	
	B is incorrect because 6 is the total number of subshells	
	C is incorrect because 9 is the number of orbitals in the third quantum shell	(1)

Question	Answer	Mark
Number		
4	The only correct answer is B (carbon)	
	A is incorrect because lithium is an s-block element with one unpaired electron C is incorrect because fluorine is a p-block element with one unpaired electron	
	D is incorrect because titanium is a d-block element with two unpaired electrons	(1)

Question	Answer	Mark
Number		
5	The only correct answer is C (aluminium)	
	A is incorrect because there would not be a large jump between the third and fourth ionisations B is incorrect because there would not be a large jump between the third and fourth ionisations	
	D is incorrect because there would not be a large jump between the third and fourth ionisations	(1)

Question Number	Answer	Mark
6	The only correct answer is D (315.3)	
	A is incorrect because this is the relative formula mass of anhydrous barium hydroxide	
	B is incorrect because the relative masses of $8H_2$ and O have been added instead of $8H_2O$	
	$m{C}$ is incorrect because an M_r value of 16 has been used for water	(1)

Question	Answer	Mark
Number		
7	The only correct answer is C (1.1)	
	A is incorrect because the volume has not been converted to dm ³	
	B is incorrect because the volume has been divided by the amount of sodium sulfate	
	$m{D}$ is incorrect because the volume has not been converted to dm ³ and the volume has been divided by the amount	(1)

Question	Answer	Mark
Number		
8	The only correct answer is B (MgO)	
	A is incorrect because the ion charges are $+1$ and -1	
	$m{\mathcal{C}}$ is incorrect because the ion charges are +1 and -1 and the ionic radii are larger	
	D is incorrect because the ionic radii are larger	(1)

Question	Answer	Mark
Number		
9	The only correct answer is B (MgI_2)	
	A is incorrect because fluoride ions are not as easily polarised as iodide ions	
	$m{\mathcal{C}}$ is incorrect because barium ions are less polarising than magnesium and fluoride ions are not easily polarised	
	D is incorrect because barium ions are less polarising than magnesium ions	(1)

Question	Answer	Mark
Number		
10(a)	The only correct answer is D (white precipitate)	
	A is incorrect because the reactants are colourless	
	B is incorrect because no gas is given off	
	C is incorrect because a precipitate forms	(1)
	C is incorrect because a precipitate forms	(1)

Question Number	Answer	Mark
10(b)	The only correct answer is C $(Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s))$	
	A is incorrect because the ion charges are not $+1$ and -1	
	B is incorrect because the equation does not represent the formation of a precipitate	
	D is incorrect because the spectator ions have not been cancelled	(1)

Question	Answer	Mark
Number		
10(c)	The only correct answer is C (0.560 g)	
	A is incorrect because the molar masses of barium chloride and barium sulfate have been reversed	
	B is incorrect because the molar, and not the mass, ratio is 1:1	
	D is incorrect because the M _r of Na ₂ SO ₄ has been used instead of BaCl ₂	(1)

Question	Answer	Mark
Number		
10(d)	The only correct answer is C (66.6%)	
	A is incorrect because the total mass of reactants and products has been used	
	B is incorrect because one mole of sodium sulfate has been used in place of two moles of sodium chloride	
	D is incorrect because one mole of NaCl has been used in the equation	(1)

Question	Answer	Mark
Number		
11	The only correct answer is A (diamond)	
	B is incorrect because C ₆₀ fullerene contains delocalised electrons	
	C is incorrect because graphene contains delocalised electrons	
	and the second of a pricing contains a contained a room one	ļ
	D is incorrect because graphite contains delocalised electrons	(1)

Question	Answer	Mark
Number		
12	The only correct answer is A (OF ₂)	
	B is incorrect because BF_3 is trigonal planar and the bond dipoles cancel	
	C is incorrect because CF₄ is tetrahedral and the bond dipoles cancel	
	D is incorrect because PF ₅ is trigonal bipyramidal and the bond dipoles cancel	(1)

Question	Answer	
Number		
13	The only correct answer is A (CH ₃ +, trigonal planar, 120°)	
	B is incorrect because the bond angle should be 107°	
	C is incorrect because the shape should be tetrahedral and the bond angle should be 109.5°	
	D is incorrect because the shape should be bent and the bond angle should be 104.5°	(1)

Question	Answer	Mark
Number		
14		
	The only correct answer is D (+ 3H ₂)	
	A is incorrect because the equation represents a correctly balanced isomerisation	
	B is incorrect because the equation is correctly balanced	
	C is incorrect because the equation is correctly balanced	(1)

Question Number	Answer	Mark
15	The only correct answer is A (H ₂)	
	B is incorrect because H ₂ O is formed in the combustion of alkane fuels	
	C is incorrect because CO is formed in the incomplete combustion of alkane fuels	
	D is incorrect because CO₂ is formed by the combustion of alkane fuels	(1)

Question	Answer	
Number		
16	The only correct answer is B (39 σ bonds, 3 π bonds)	
	A is incorrect because 15 is the number of C–C σ bonds	
	${\it C}$ is incorrect because 15 is the number of C–C σ bonds and 6 is twice the number of π bonds	
	D is incorrect because 6 is twice the number of π bonds	(1)

Question	Answer	
Number		
17	CH ₃	
	,	
	A is incorrect because this polymer is made from propene, which does not have E/Z isomers	
	B is incorrect because this polymer is made from propene, which does not have E/Z isomers	
	C is incorrect because this polymer is made from 2-methylpropene, which does not have E/Z isomers	(1)

(Total for Section A = 20 marks)

Section B

Question Number	Answer	Additional Guidance	Mark
18(a)	• 1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	Accept $2p_x^2 2p_y^2 2p_z^2$ for $2p^6$ etc	
		Ignore [Ne] for 1s ² 2s ² 2p ⁶	(1)

Question Number	Answer	Additional Guidance	Mark
18(b)	e species and balancing		
	• state symbols (1)	Do not award multiples M2 dependent on M1 or neutral Cl/Cl ₂ on one side of equation and charged Cl ⁺ /Cl ₂ ⁺ /Cl ⁻ /Cl ₂ ⁻ on the other Ignore state symbol on electron	(2)

Question Number	Answer	Additional Guidance	Mark
18(c)	An explanation that makes reference to the following points: chlorine is higher and	Accept reverse arguments throughout This can be implied through correct reference to attraction between nucleus and (outer) electron / amount of energy required to remove (outer) electron If bromine identified as higher, or it is not implied which element has the higher ionisation energy, penalise once only	
	any three of the following qualifying statements:		
	 (although) the nuclear charge / number of protons is lower 	Ignore effective nuclear charge	
	 the (outer) electron is in a lower (principal) energy level / orbital of lower energy (1)	Allow (outer) electron is lower in energy Allow 3p lower in energy than 4p	
	the (outer) electron is closer to the nucleus / smaller (atomic) radius	Allow just smaller atom Do not award smaller ionic radius Allow just fewer shells Ignore just fewer sub-shells / electrons	
	(the outer electron experiences) less shielding (1)	Accept less repulsion from inner / core electrons Ignore just less repulsion between electrons Do not award less repulsion between paired electrons within an orbital	(3)

Question Number	Answer	Additional Guidance	Mark
18(d)	correct dot-and-cross diagram	Example of dot-and-cross diagram: •• ×× •• ×× Allow any combination of dots, crosses or other symbols for electrons Allow indication of shells by overlapping circles	
		Allow correctly filled inner shells	(1)

Question Number	Answer		Additional Guidance	Mark
18(e)	An explanation that makes reference to the following points: (chlorine is a simple molecule with)			
	weak forces between the molecules	(1)	Accept weak London / instantaneous dipole- induced dipole / van der Waals / VdW forces	
			Allow weak intermolecular bonds / weak bonds between molecules	
			Do not award if implied that intermolecular forces are within a chlorine molecule	
	little energy required to overcome these forces	(1)	M2 dependent on M1 Do not award just bond for forces unless clear that the bond is intermolecular	
			Allow as relatively few electrons / small contact surface area	(2)

Question Number	Answer	Additional Guidance	Mark
18(f)(i)	• lines at 70 and 72 and 74 only (1)	Mark M1 and M2 independently	
	• relative abundances 90:60:10 (1) respectively	Relative abundance 50 Accept relative abundances 100:67:11 / 54:36:6 Allow relative abundances in ratio close to 9:6:1, eg 100:65:11 / 55:40:6 If neither M1 nor M2 awarded, two peaks at correct <i>m/z</i> and	
		in correct ratio scores (1), eg peaks at 70 and 74 in 9:1 ratio	(2)

Question Number	Answer		Additional Guidance	Mark
18(f)(ii)	An answer that makes reference to the following points:		Mark M1 and M2 independently	
	• (peak is due to) ³⁵ Cl- ³⁷ Cl (molecular ion)	(1)	Allow any indication that peak is due to combination of (chlorine-)35 and (chlorine-)37, eg $(35+37)/2 = 36$	
			Do not award chlorine-36 isotope	
	• (with a charge of) 2+	(1)	Allow (molecular ion has) lost two electrons	
			Just $(^{35}Cl-^{37}Cl)^{2+}$ or $(35-37)^{2+}$ scores (2)	(2)

(Total for Question 18 = 13 marks)

Question	Answer	Additional Guidance	Mark
Number			
19(a)(i)	An answer that makes reference to the following points:	Credit can be awarded from annotations to the graph	
	• (incorrectly plotted metal is) aluminium / Al (1)	Ignore classification of elements as metallic /	
	• (incorrectly plotted non-metal is) argon / Ar (1)	non-metallic, even if incorrect	(2)

Question Number	Answer	Additional Guidance	Mark
19(a)(ii)	An answer that makes reference to the following points:	Mark all points independently	
	(silicon has a) giant (lattice/molecular structure)	Accept macromolecular Ignore large molecule	
	and	Assembly all attracts to a three attracts and a three at	
	covalent (bonds) (1)	Accept electrostatic attraction between nuclei and shared pair of electrons	
	 (many) strong (covalent) bonds (between silicon atoms) 	Allow strong electrostatic attraction between (silicon) atoms Do not award strong ionic/metallic bonds	
	or	Do not award strong intermolecular forces Ignore three bonds between (silicon) atoms	
	each (silicon) atom bonded to four others (1)	Do not award any other elements / number of bonds	
	 requiring a large amount of energy to break (1) 	Allow overcome for break	(3)

Question Number	Answer		Additional Guidance	Mark
19(b)(i)	A description that makes reference to the following points:			
	(metals contain) delocalised electrons	(1)	Allow delocalised electron Allow sea of electron(s) Ignore just free electrons Ignore charge carriers	
	(which can) flow / move (freely through the structure when a potential difference is applied)	(1)	M2 dependent on M1 Ignore reference to physical state	(2)

Question	Answer	Additional Guidance	Mark
Number			
19(b)(ii)	A description that makes reference to the following points:	Accept reverse argument	
	Aluminium has more delocalised electrons (than sodium per atom / ion)	Allow just more delocalised electrons	
	or		
	Aluminium has three delocalised electrons whereas sodium has one (per atom / ion)	Do not award incorrect numbers of delocalised electrons (per atom / ion)	(1)

Question Number	Answer		Additional Guidance	Mark
19(c)(i)	Dot-and-cross diagram showing the following:		Example of dot-and-cross diagram: $2[Al]^{3+} 3[\overset{\times}{\circ}\overset{\times}{\circ}]^{2-}$	
	0 electrons on outer shell of aluminium and 8 electrons on outer shell of oxide	(1)	M1 dependent on some indication of ionic structure Allow 8 electrons on outer shell of Al Allow correctly filled inner shells Allow any combination of dots or crosses for electrons Allow circles to indicate outer shells	
	two aluminium (ions) and three oxide (ions)	(1)	Accept any unambiguous indication of the correct number of ions Allow any indication that formula is Al ₂ O ₃ , even if covalent dot-and-cross diagram shown	
	3+ charge on aluminium ion and 2- charge on oxide ion	(1)	Allow +3 and -2 Ignore missing square brackets	
			If no other mark awarded, a correct dot-and-cross diagram for either an Al ³⁺ ion or O ²⁻ ion scores (1)	(3)

Question Number	Answer	Additional Guidance	Mark
19(c)(ii)	 ions must be mobile / free to move (to allow a current to flow) 	Allow reverse argument (eg ions cannot move in the solid)	
		Allow ions can flow	
		Ignore just ions must be free	
		Ignore charge carriers / charged particles	
		Ignore reference to aqueous solutions	
		Ignore just ions must be delocalised / dissociated	
		Ignore reference to (lack of) delocalised electrons in the solid state	
		Do not award reference to (presence of) delocalised electrons in the liquid/molten state	(1)

(Total for Question 19 = 12 marks)

Question Number	Answer		Additional Guidance	Mark
20(a)	Correct structures of:		Allow displayed, structural, skeletal formulae or any combination of these	
	• 2-methylpentane (1)	If more than one type of formula is given	
	• 3-methylpentane (1)	for an isomer all must be correct	
	• 2,2-dimethylbutane (1)	Penalise missing hydrogens from displayed formulae once only	
	• 2,3-dimethylbutane (1)	Ignore bond angles and bond lengths	
			Ignore names even if incorrect	
			Example of correct structures:	
			(2-methylpentane)	
			(3-methylpentane)	
			(2,2-dimethylbutane)	
			(2,3-dimethylbutane)	(4)

Question Number	Answer		Additional Guidance	Mark
20(b)(i)	Mechanism / equation showing:		Example of mechanism: $Br \xrightarrow{(UV)} Br \xrightarrow{(UV)} 2Br^{\bullet}$	
	 homolytic fission of Br-Br bond with curly half-arrows 	(1)	Allow curly half-arrows on same side of the bond Do not award arrows that are not half-headed	
	(producing) two bromine radicals	(1)	Do not award missing •	
			Use of CI for Br in otherwise fully correct equation scores (1)	(2)

Question	Answer		Additional Guidance	Mark
Number				
20(b)(ii)				
	• $C_6H_{14} + Br \bullet \rightarrow C_6H_{13} \bullet + HBr$	(1)	Allow equations in either order	
	• C_6H_{13} • + $Br_2 \rightarrow C_6H_{13}Br$ + Br •	(1)	Penalise missing • in (b)(i) and (b)(ii) once only	
				(2)

Answer	Additional Guidance	Mark
• C ₁₂ H ₂₆	Allow H ₂₆ C ₁₂	
		(1)

Question Number	Answer	Additional Guidance	Mark
20(b)(iv)	 evidence of C₆Br₁₄ (identified as heaviest possible product) 	Example of calculation:	
	calculation of molar mass (1)	$14\times 79.9+6\times 12.0~(=~1190.6)$ TE on any compound of formula $C_6H_{(14-n)}Br_n$ (where $2\leq n<14$) or C_6Br_{12}	
	calculation of percentage by mass of the community o	$\label{eq:Br} \begin{array}{l} \text{\%Br} = (14 \times 79.9) / (14 \times 79.9 + 6 \times 12.0) \times 100 \\ = 93.953 \% \\ = 94.0 \% \\ \text{TE on any compound of formula $C_6H_{(14-n)}Br_n$ or $C_6H_{(12-n)}Br_n$} \end{array}$	
		Allow use of 80 for relative atomic mass of bromine Ignore SF except 1 SF	(3)

(Total for Question 20 = 12 marks)

Question Number		Answer	Additional Guidance	Mark
21(a)			Example of calculation:	
	•	calculation of moles of ethene (1)	mols = $\frac{1.50 \times 10^{14}}{28.0}$ = 5.3571 × 10 ¹²	
	•	calculation of number of ethene molecules (1)	molecules = $5.3571 \times 10^{12} \times 6.02 \times 10^{23}$ = 3.225×10^{36}	
			TE on moles of ethene (calculated by dividing a mass by a molar mass)	
			Ignore SF except 1 SF	
			$(3.225 / 3.23 / 3.2) \times 10^{36}$ scores (2)	(2)

Question Number	Answer		Additional Guidance	Mark
21(b)			Example of calculation:	
	M1: conversion of temperature to K	(1)	(T = 21 + 273 =) 294 (K)	
	M2: rearrangement of ideal gas equation	(1)	$n = \frac{pV}{RT}$ or $n = \frac{1.01 \times 10^5 \times 220}{8.31 \times 294}$	
	M3: evaluation to give moles of gas	(1)		
	M4: use of mixing ratio to calculate moles of ethene	(1)	moles = $\frac{100}{10^6} \times 9094.9$ = 0.90949 Ignore SF except 1 SF TE on M3	
	M5: answer to 2 or 3SF – standalone	(1)	0.91 / 0.909 (moles) Do not award incorrect units Max (3) for calculations using 24 dm³ mol⁻¹ as the molar gas volume (ie no M1 or M2) eg 0.92 scores (3), 0.916667 scores (2)	

Alternative route to M2, M3 and M4			
use of mixing ratio to calculate volume occupied by ethene	(1)	$V = \frac{100}{10^6} \times 220$ = 0.022 (m ³) Do not award 0.02	
rearrangement of ideal gas equation	(1)	$n = \frac{pV}{RT}$ or	
evaluation to give moles of ethene	(1)	$n = \frac{1.01 \times 10^{5} \times 0.022}{8.31 \times 294}$ $n = 0.90949$ Ignore SF except 1 SF TE on M1	
		No TE on incorrect volume	(5)

Question Number	Answer		Additional Guidance	Mark
21(c)(i)	Mechanism showing:		Example of mechanism: $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
			Mark all points independently	
			Penalise use of HCl / HBr / Br ₂ for Cl ₂ once only	
			Penalise incorrect alkene once only	
			Penalise missing H atom once only	
			Penalise use of curly half-arrows once only	
	 induced dipole on chlorine and correct product 	(1)	Do not award full charges	
	 curly arrow from C=C bond to Cl(δ+) 			
	and curly arrow from CI–CI bond to CI(δ –)	(1)		
	correct carbocation intermediate	(1)	Do not award 'open bond' on C ⁺	
	lone pair and negative charge on chloride		Do not award Cl ^{8−}	
	and curly arrow from lone pair to C ⁽⁺⁾	(1)	Do not award curly arrow from negative charge	(4)

Question Number	Answer	Additional Guidance	Mark
21(c)(ii)	An explanation that makes reference to the following points:	Mark M1 and M2 independently	
	• identification of hazard (1)	(in)flammable	
	• suitable precaution (1)	avoid (naked) flames / fire	
		Ignore just take care with flames / fire	
		Ignore fire extinguishers etc	
		Allow use heating mantle / (electric) water bath etc	
		Ignore keep away from heat source / do not heat	
		Ignore Bunsen burner	
		Allow heat in an inert atmosphere / nitrogen / argon	
		Ignore just exclude oxygen / heat in absence of oxygen	
		Allow use small amounts	
		Ignore fume cupboard	
		Ignore gloves / tie hair back / safety goggles / laboratory coat	(2)

Question Number	Answer	Additional Guidance	Mark
21(d)(i)	Method 1	Ignore SF except 1 SF for all methods Example of calculation:	
	• calculation of mass C, H and O (1)	mass C = $\frac{24}{28}$ × 10.0 = 8.5714 (g) mass H = $\frac{4}{28}$ × 10.0 = 1.4286 (g) 28 mass O = 15.7–10.0 = 5.70 (g)	
	calculation of moles C, H and O and	C : H : O <u>8.5714</u> : <u>1.4286</u> : <u>5.7</u> 12	
	empirical formula (1)	empirical formula is C_2H_4O TE on M1 only if mass(C + H + O) = 15.7 (g)	
	Method 2 $ \bullet \text{calculation of moles C_2H$_4$ and O } $ or	(moles $C_2H_4 = \underline{10.0} =) 0.35714$ $\underline{28}$ (moles $O = \underline{(15.7-10.0)} =) 0.35625$ $\underline{16}$	
	calculation of moles C_2H_4 and O_2 (1)	(moles $C_2H_4 = \underline{10.0} = 0.35714$ 28 (moles $O_2 = \underline{(15.7-10.0)} = 0.17813$ 32	
	empirical formula (1)	M2 dependent on M1 empirical formula is C ₂ H ₄ O	

Method 3	
 calculation of moles C₂H₄ 	(moles $C_2H_4 =)\frac{10.0}{28} = 0.35714$
and	20
M _r product () $(M_r \text{ product} =) \frac{15.7}{0.35714} = 43.96$
empirical formula and calculation of M_r of empirical formula (3)	M2 dependent on M1 empirical formula is C_2H_4O $2 \times 12 + 4 \times 1 + 1 \times 16 = 44$

Question	Answer	Additional Guidance	Mark
Number 21(d)(ii)		Example of displayed formula:	
	 displayed formula of ethane-1,2-diol 		
		H H 	
		Ignore skeletal or structural formulae Allow non-displayed OH groups Ignore bond lengths and angles	
		Do not award horizontal OH-C connectivity	
		Ignore connectivity of pendant / vertical non-displayed OH groups	
		Do not award missing H atoms	(1)

Question Number	Answer	Additional Guidance	Mark
21(e)	correct equation and skeletal formulae	Example of equation:	
		Allow molecules in any orientation Ignore bond lengths and angles Allow multiples	
		Ignore molecular, structural or displayed formulae Do not award if additional products given	(1)

Question Number	Answer	Additional Guidance	Mark
21(f)(i)	addition	Ignore additional	
	or	Do not award electrophilic / nucleophilic addition	
	reduction	Ignore redox	
	or		
	hydrogenation	Do not award hydration	
		Do not award cracking	
		Do not award reforming	(1)

Question Number	Answer	Additional Guidance	Mark
21(f)(ii)		Mark M1 and M2 independently	
	• steam	Accept H ₂ O(g) / water vapour	
	or		
	water and		
	heat (1)	Allow any stated temperature 100°C ≤ T ≤ 400°C Ignore stated temperatures < 100°C Ignore high temperature Do not award stated temperatures > 400°C Do not award (heat under) reflux	
	• acid catalyst (1)	Accept (concentrated) phosphoric acid / H ₃ PO ₄ Allow (concentrated) sulfuric acid / H ₂ SO ₄ Do not award dilute acid catalysts	
		Ignore reference to pressure	
		Accept react with concentrated H ₂ SO ₄ followed by hydrolysis (2)	(2)

Question Number	Answer		Additional Guidance	Mark
21(f)(iii)	An explanation that makes reference to the following points:		Mark all points independently	
	• (angle b is) 104.5°	(1)	Allow 103° to 106°	
	 four bond pairs (of electrons around C) for angle a 		Allow four pairs of electrons (around the central atom) for both angles	
	and		Ignore covalent bond for bond pair	
	two bond pairs and two lone pairs (of electrons around O) for angle b	(1)	Ignore just two lone pairs for angle b and no lone pairs for angle a	
	lone pairs (of electrons) repel more than bond pairs	(1)	Allow each lone pair reduces the bond angle by 2.5°	
			Allow lone pair-lone pair / lone pair- bond pair repulsion greater than bond pair-bond pair repulsion	
			Allow just lone pairs repel more / lone pair repulsion greatest	
			Ignore (electron) pairs repel to maximum separation / minimum	
			repulsion Do not award (electron) pairs repel to minimum separation / maximum repulsion	(3)

(Total for Question 21 = 23 marks) TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS